Using lanthanoid complexes to phase large macromolecular assemblies

نویسندگان

  • Romain Talon
  • Richard Kahn
  • M. Asunción Durá
  • Olivier Maury
  • Frédéric M. D. Vellieux
  • Bruno Franzetti
  • Eric Girard
چکیده

Lanthanoid ions exhibit extremely large anomalous X-ray scattering at their L(III) absorption edge. They are thus well suited for anomalous diffraction experiments. A novel class of lanthanoid complexes has been developed that combines the physical properties of lanthanoid atoms with functional chemical groups that allow non-covalent binding to proteins. Two structures of large multimeric proteins have already been determined by using such complexes. Here the use of the luminescent europium tris-dipicolinate complex [Eu(DPA)(3)](3-) to solve the low-resolution structure of a 444 kDa homododecameric aminopeptidase, called PhTET1-12s from the archaea Pyrococcus horikoshii, is reported. Surprisingly, considering the low resolution of the data, the experimental electron density map is very well defined. Experimental phases obtained by using the lanthanoid complex lead to maps displaying particular structural features usually observed in higher-resolution maps. Such complexes open a new way for solving the structure of large molecular assemblies, even with low-resolution data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomic and electron microscopy survey of large assemblies in macrophage cytoplasm.

Many cellular processes are carried out by large macromolecular assemblies. We systematically analyzed large macromolecular assemblies in the cytoplasm of mouse macrophages (RAW264.7 cell line), cells with crucial roles in immunity and inflammation. Fractionation of the cytoplasmic fraction was performed using sucrose density gradient centrifugation, and individual fractions were subjected in p...

متن کامل

Merging molecular electron microscopy and mass spectrometry by carbon film-assisted endoproteinase digestion.

Many fundamental processes in the cell are performed by complex macromolecular assemblies that comprise a large number of proteins. Numerous macromolecular assemblies are structurally rather fragile and may suffer during purification, resulting in the partial dissociation of the complexes. These limitations can be overcome by chemical fixation of the assemblies, and recently introduced protocol...

متن کامل

Protein–protein HADDocking using exclusively pseudocontact shifts

In order to enhance the structure determination process of macromolecular assemblies by NMR, we have implemented long-range pseudocontact shift (PCS) restraints into the data-driven protein docking package HADDOCK. We demonstrate the efficiency of the method on a synthetic, yet realistic case based on the lanthanide-labeled N-terminal ε domain of the E. coli DNA polymerase III (ε186) in complex...

متن کامل

Surface-induced dissociation shows potential to be more informative than collision-induced dissociation for structural studies of large systems.

The ability to preserve noncovalent, macromolecular assemblies intact in the gas phase has paved the way for mass spectrometry to characterize ions of increasing size and become a powerful tool in the field of structural biology. Tandem mass spectrometry experiments have the potential to expand the capabilities of this technique through the gas-phase dissociation of macromolecular complexes, bu...

متن کامل

Macromolecular recognition in the Protein Data Bank

Crystal structures deposited in the Protein Data Bank illustrate the diversity of biological macromolecular recognition: transient interactions in protein-protein and protein-DNA complexes and permanent assemblies in homodimeric proteins. The geometric and physical chemical properties of the macromolecular interfaces that may govern the stability and specificity of recognition are explored in c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011